Wednesday, February 15, 2012

Volume 2

$\newcommand{\bpm}{\begin{pmatrix}}\newcommand{\epm}{\end{pmatrix}}\newcommand{\bsm}{\begin{smallmatrix}}\newcommand{\esm}{\end{smallmatrix}}\newcommand{\bspm}{\left(\begin{smallmatrix}}\newcommand{\espm}{\end{smallmatrix}\right)}\newcommand{\bm}{\begin{matrix}}\renewcommand{\em}{\end{matrix}}\newcommand{\bbm}{\begin{bmatrix}}\newcommand{\ebm}{\end{bmatrix}}\newcommand{\bs}{\backslash}\newcommand{\C}{\mathbb{C}}\newcommand{\G}{\mathbb{G}}\newcommand{\A}{\mathbb{A}}\newcommand{\Q}{\mathbb{Q}}\newcommand{\Z}{\mathbb{Z}}\newcommand{\R}{\mathbb{R}}\newcommand{\N}{\mathbb{N}}\renewcommand{\H}{\mathbb{H}}\newcommand{\Tr}{\operatorname{Tr}}\newcommand{\Stab}{\operatorname{Stab}}\newcommand{\Ad}{\operatorname{Ad}}\newcommand{\Invt}{\operatorname{Invt}}\newcommand{\Vol}{\operatorname{Vol}}\newcommand{\Dyn}{\operatorname{Dyn}}\newcommand{\Gal}{\operatorname{Gal}}\newcommand{\diag}{\operatorname{diag}}\newcommand{\pr}{\operatorname{pr}}\newcommand{\der}{\operatorname{der}}\newcommand{\Ind}{\operatorname{Ind}}\newcommand{\End}{\operatorname{End}}\newcommand{\Aut}{\operatorname{Aut}}\newcommand{\Hom}{\operatorname{Hom}}\newcommand{\Inn}{\operatorname{Inn}}\newcommand{\inc}{\operatorname{inc}}\newcommand{\sym}{\operatorname{sym}}\newcommand{\Syl}{\operatorname{Syl}}\newcommand{\Ker}{\operatorname{Ker}}\newcommand{\Spin}{\operatorname{Spin}}\newcommand{\GSpin}{\operatorname{GSpin}}\newcommand{\Span}{\operatorname{Span}}\newcommand{\st}{\text{ s.t. }}\newcommand{\bx}{\boxed}\newcommand{\tx}{\text}\newcommand{\la}{\langle}\newcommand{\ra}{\rangle}\newcommand{\lla}{\left\langle}\newcommand{\rra}{\right\ra}\newcommand{\ptl}[2]{\frac{\partial #1}{\partial #2}}\newcommand{\dd}[2]{\frac{d #1}{d #2}}\newcommand{\ddt}{\dd{}t}\newcommand{\ve}{\varepsilon}\newcommand{\vph}{\varphi}\newcommand{\on}{\operatorname}\newcommand{\ol}{\overline}\newcommand{\ul}{\underline}\renewcommand{\Re}{\on{Re}}\renewcommand{\Im}{\on{Im}}\newcommand{\gm}{\gamma}\newcommand{\Gm}{\Gamma}\newcommand{\sg}{\sigma}\newcommand{\quo}[1]{#1(F)\bs #1(\A)}\newcommand{\il}{\int\limits_}\newcommand{\iq}[1]{\il{\quo{#1}}}\newcommand{\Res}{\on{Res}}\newcommand{\wt}{\widetilde}\newcommand{\Mat}{\on{Mat}}\newcommand{\f}{\mathfrak}\renewcommand{\c}{\mathcal}$

Page 6, Definition of Slash operator does not satisfy
$$
\Phi\big|_\rho \gm \gm' = \Phi \big|_\rho\gm \big|_\rho\gm',
$$(i.e., does not define a right action). This correction was brought to our attention by Fan Zhou. To correct it, the slash operator should be defined as
$$
(\Phi\big|_\rho\gm)(z)
= J_\rho( \gm, z) \cdot \Phi(\wt{\gm.z})
$$
instead of
$$
(\Phi\big|_\rho\gm)(z)
= J_\rho( \gm, z)^{-1} \cdot \Phi(\wt{\gm.z}).
$$
(Delete the $^{-1}$.)

Page 91, two references to Theorem 14.8.5 should actually refer to Theorem 14.8.11 (there is no Theorem 14.8.5).

Page 142, statement of Theorem 15.8.6 when $r=1,$ we get $L_p( s, |\ |_p^{\frac{d-1}2}\cdot \pi),$ not $L_p( s, |\ |_p^{\frac{1-d}2}\cdot \pi).$ (It may also be worth noting that if $r=1,$ then $d=n.$)

Page 142-43, proof of Theorem 15.8.6 in the case r=1 Beginning from equation (15.8.7), explicit formulae are written which are only valid if $\pi$ (which is now a character) is unramified. When $r=1$ and $\pi$ is a ramified character, both (15.8.7) and (15.8.8) become $Z_p(s, \Phi, \beta) = Z_p(1-s, \widehat\Phi, \overset{\vee}\beta).$ Roughly the same argument used in the unramified case shows that in this case $L_p(s, \pi') = 1.$ But $L_p(s, |\ |_p^{\frac{n-1}2} \cdot \pi)$ is also equal to $1,$ so the statement of the theorem is still correct.

Page 143, line 10 The expression $(1-\pi(p) p^{-s-\frac{n-1}2})$ is equal to $L_p(s, |\ |_p^{\frac{n-1}2}\cdot \pi),$ or $L_p(s, |\ |_p^{\frac{d-1}2}\cdot \pi),$ but not $L_p(s, |\ |_p^{\frac{1-d}2}\cdot \pi).$ Also we remind the reader that this holds only if $\pi$ is unramified.

Page 124, Proposition 15.3.2Before one can apply Theorem 13.7.3 to an irreducible cuspidal automorphic representation of $GL(n \A_\Q),$ one must know that it is an admissible $(\mathfrak{g}, K) \times GL(n, \A_{\text{finite}})$-module. The proof is the same as in the $GL(2)$ case, requiring a suitable analogue of theorem 3.12.1. A good reference is Borel, A.; Jacquet, H. Automorphic forms and automorphic representations. With a supplement "On the notion of an automorphic representation'' by R. P. Langlands. Proc. Sympos. Pure Math., XXXIII, Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, pp. 189–207, Amer. Math. Soc., Providence, R.I., 1979.

No comments:

Post a Comment